Biegespannung Zwischenrahmen

Berechung Durchbiegung auf einen Träger

Technische Annahmen

Längsträger:

200x80x3,2 SJ275 / St44-2

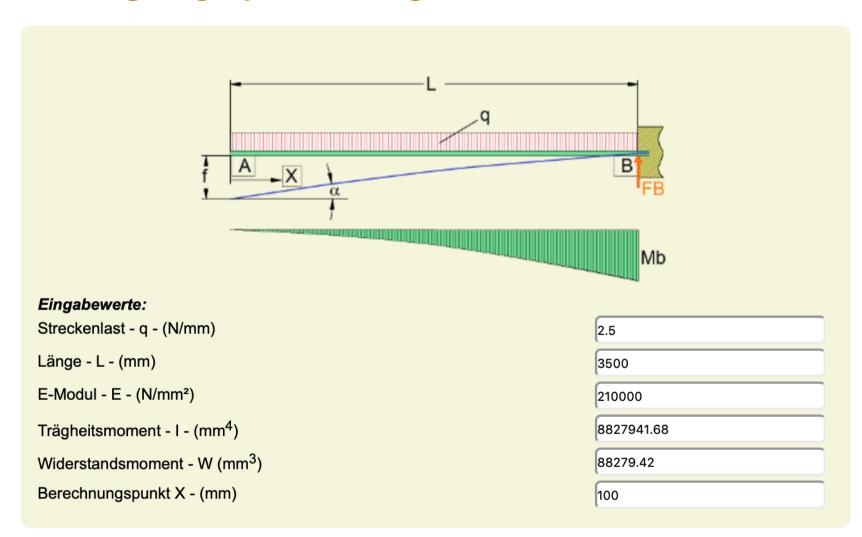
Auflagelänge: 3500mm

Last Koffer: 2000kg

Länge Koffer: 4000mm

Flächenlast: 2,5N/mm

Lastfall: Statisch


Modell: Vereinfachtes Lastmodell

Berechung: Durchbiegung eines

Längsträgers bei Verwindung

Fahrgestell

Einseitig eingespannter Träger mit Streckenlast

Auflagerkraft - F (N) Koordinate x = 2500 mm [EP]	8750.0
Koordinate x = 3500 mm [FB]	8750.0
Biegemoment - M (Nmm)	,
Koordinate x = 0.0 mm [A]	0
Koordinate x = 100 mm	-12500.0
Koordinate x = 3500 mm [B]	-15312500.0
Max. Biegemoment bei x = 3500 mm	-15312500.0
Biegespannung - σ _b (N/mm²)	
Koordinate x = 0.0 mm [A]	0
Koordinate x = 100 mm	0.142
Koordinate x = 3500 mm [B]	173.5
Max. Biegespannung bei x = 3500 mm	173.5
Durchbiegung - f (mm)	
Koordinate x = 0.0 mm [A]	25.3
Koordinate x = 100 mm	24.3
Koordinate x = 3500 mm [B]	0
Max. Durchbiegung bei x = 0 mm	25.3
Neigung - tan α	
Koordinate x = 0.0 mm [A]	-0.00964